Partial Fourier imaging in multi-dimensions: a means to save a full factor of two in time.
نویسندگان
چکیده
We present an improvement to the traditional one-dimensional partial Fourier method by extending the method to multi-dimensions. The modified method allowed a full factor of two savings in time with much better coverage of the central k-space information and, because of this, smaller reconstruction artifacts. The residual magnitude error was found to correlate strongly with the residual phase error. Numerical simulation also indicated that with a priori perfect phase information, the original magnitude image could be perfectly reconstructed with half of the k-space data points in the multi-dimensional case. Simulated, phantom, and human data sets were tested with edge differences ranging from 10% (consistent with variable Gibbs ringing) to 25% (consistent with a blurred version of the object). The method was found to be a valuable adjunct to human imaging for short TR, T1-weighted three-dimensional gradient-echo imaging and magnetic resonance (MR) angiographic methods, especially when short echo times were used.
منابع مشابه
Multi-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملA Novel Design of Reversible Multiplier Circuit (TECHNICAL NOTE)
Adders and multipliers are two main units of the computer arithmetic processors and play an important role in reversible computations. The binary multiplier consists of two main parts, the partial products generation circuit (PPGC) and the reversible parallel adders (RPA). This paper introduces a novel reversible 4×4 multiplier circuit that is based on an advanced PPGC with Peres gates only. Ag...
متن کاملSea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison
L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2001